
  

2D-BayesPointer: An Implicit Moving 
Target Selection Technique Enabled by 
Human Performance Modeling 

Abstract 

Interactive systems with dynamic content are becoming 

ubiquitous nowadays. However, it is challenging to 

select small and fast-moving targets in such 

environment. We present 2D-BayesPointer, a novel 

interaction technique to assist moving target selection 

in 2D space. Compared with previous techniques, our 

method provides implicit support without modifying the 

original interface design. Moreover, the algorithmic 

parameters are determined by probabilistic modeling of 

human performance in moving target selection tasks. 

The preliminary results from a pilot study have shown 

that this technique can significantly improve both 

selection speed and accuracy. 
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Introduction 

Moving target selection is a common task in interactive 

systems with dynamic content such as games, Virtual 

Reality (VR) and Augmented Reality (AR) applications. 

For instance, in traffic control displays, users select a 

vehicle to view detailed information. In first-person 

shooter games, players point at the moving enemies to 

attack them. These tasks are challenging because users 

need to continuously track the target and 

simultaneously plan the timing for selection, which 

impose high sensory-motor coordination demand on 

users. A number of assist techniques have been 

proposed to address this challenge. Comet and Target 

Ghost [3], for example, improve selection accuracy by 

either enlarging the target’s activation area or reducing 

target speed. Although these techniques were proved 

to be effective, they either modify the original interface 

design or need additional operations from users.  

We recently proposed an implicit interaction technique, 

BayesPointer [4], to assist moving target selection in 

1D space. The technique was built upon a Ternary-

Gaussian model that describes the selection endpoint 

distribution (Figure 1.a). Specifically, BayesPointer 

determines the intended target based on the statistical 

criterion derived from the endpoint distribution, rather 

than merely relying on the physical boundaries. Since 

this technique does not modify the original interface 

design, it is transparent to users. However, 

BayesPointer and its underlying model have only been 

validated in 1D space. Moreover, there has been no 

formal comparisons between BayesPointer and other 

state-of-the-art techniques. 

In this work, we extend our prior work in 2D space to 

make it applicable to more diverse interaction 

scenarios. Specifically, we make the following three 

contributions. First, we extend and validate the 

Ternary-Gaussian model to describe endpoint 

distribution in 2D moving target selection tasks (Figure 

1.b). Second, we use this model as statistical criterion 

and build 2D-BayesPointer, an implicit target selection 

technique that works in 2D space (Figure 1.c). Third, 

we conducted formal comparisons between our 

technique with other state-of-the-art techniques (i.e. 

Bubble Cursor and Comet). The results showed that 

2D-BayesPointer outperformed Comet in selection 

accuracy, and outperformed Bubble Cursor in both 

speed and accuracy. 

Related Work 

Novel Selection Techniques 

Researchers proposed both cursor enhancement 

methods and target enhancement methods to assist 

selection. Area Cursor [5] is one of the most well-

known cursor enhancement techniques. It uses an 

area, rather than a point, to represent cursor, which 

can increase the effective selection area. However, it 

suffers when the area cursor overlaps with multiple 

selectable objects. Bubble Cursor [2] addresses this 

problem by dynamically changing the selection area 

based on the surrounding targets. As a target 

enhancement technique, Comet [3] adds a tail to each 

target based on its speed and width thus to enlarge the 

its activation area. Target Ghost [3] reduces the target 

speed to zero by pausing the whole scene and creating 

static proxies of objects. Although these techniques 

have been proved to be beneficial, they result in either 

modifications of the original interface design or 

additional demand for user input (e.g., button press 

[3]). 

  

Figure 1. A snapshot of our work. (a) 

The Ternary-Gaussian model 

describing endpoint distribution in 1D 

space. (b) We build a bivariate 

Gaussian model to extend and validate 

prior work in 2D space. (c) We propose 

2D-BayesPointer, a moving target 

selection technique which determines 

the intended target based on statistical 

criterion derived from selection 

endpoint distribution, rather than the 

physical boundaries. 



 

Statistical Criterion (Human Performance Modeling) 

Researchers also explored assisting target selection via 

statistical criterion derived from human performance 

modeling. Bayesian Touch [1] combines Bayes’ rule and 

a dual Gaussian distribution hypothesis to improve the 

accuracy of target selection for finger touch. However, 

this work only focuses on static targets. We proposed a 

Ternary-Gaussian model in our prior work [4] to 

describe the endpoint distribution in 1D moving target 

selection. We found that the shape of the distribution 

as characterized by μ and σ in the Gaussian model 

were primarily determined by the speed (V) and size of 

the moving target (W): 

=a+bV+cW  
(1) 
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The model fitted the empirical data well with 0.95 and 

0.94 R2 values for μ and σ, respectively. Based on this 

model, we further proposed BayesPointer which 

identified the intended target based on the probability 

density function (PDF) of endpoint distribution as the 

likelihood function in Bayes’ rule. However, the model 

and selection technique in our previous study are 

limited to 1D space, and lack of formal comparisons 

with existing assist techniques. 

Methods 

Bivariate Gaussian Model 

We first extend the Ternary-Gaussian model from 1D 

space to 2D space. We define the two axes of the 

Speed Coordinate space as follows (Figure 2): 

 X-axis: the axis parallel with the moving direction; 

 Y-axis: the axis perpendicular to the moving 

direction. 

Assuming that the distributions in these two axes are 

independent, we get a bivariate Gaussian distribution 
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Where μx and μy, σx and σy are means and standard 

deviations in the two axes, respectively. By 

decomposing the speed vector along the two axes, we 

can adopt the Ternary-Gaussian in each axis. 

For x-axis, note that the decomposed speed Vx=V, and 

the formulations of μx and σx can be written as:  

x x x x=a +bV+cW  
(4) 
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For y-axis, the decomposed speed Vy=0, and the 

endpoints-shifting effect which reflected by the 

expectation value is minimal, thus we set μy to zero. 

However, for σy, the overall target speed brings 

uncertainty to user’s movement even in the vertical 

direction as it required a quicker “click” action. 

Therefore, we kept the formulation consist with x-axis 

with different constants: 

y=0  
(6) 
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Model Fitting  

We collected data to estimate the parameters in the 

bivariate Gaussian model from 12 subjects (average 

age = 25, 6 females). The study included 16 conditions 

corresponding to 4 levels of target width W (24, 48, 96 

 

Figure 2. The illustration of the 

coordinate system used in this 

work. 

 

Figure 3. A concrete example 

illustrating how 2D-BayesPointer 

works in practice. (a) Two moving 

targets with different widths and 

speed levels; (b) t2 is determined 

as the intended target because 

P(s|t2) > P(s|t1).  



 

and 144 pixels) × 4 levels of target speed V (96, 192, 

288, 384 pixels/second). Each condition included 10 

trials, and each subject performed 160 trials in total. By 

applying least square regression, the model fit the data 

well with 0.961, 0.938, 0.955 R2 values for μx, σx and 

σy, respectively. For μy, we do not use R2 value to 

evaluate it as it was arbitrarily set to zero. 

Alternatively, mean absolute error (MAE) was 

computed, and a 1.05 pixels MAE of it showed that it is 

very close to the actual values. 

2D-BayesPointer 

We then integrated the bivariate Gaussian model into 

Bayes’ rule to derive the decision-making strategy of 

2D-BayesPointer. Assuming there are n targets {t1, 

t2, …, tn}, and an endpoint s. According Bayes’ rule, we 

can get the probability of selecting target t given 

endpoint s: 

( | ) ( )
( | )

( )

P s t P t
P t s

P s
  

(8) 

where P(t) is the priori probability to select target t, 

P(s) is the normalization constant, and P(s|t) is the 

likelihood function that express how probable the touch 

point s is if t is the intended target, which can be 

calculate through the PDF of our bivariate Gaussian 

model. Our goal is to find t* (the intended target) that 

maximizes P(t|s). We let each target have the same 

priori probability to be selected, then the target with a 

highest P(s|t) will be treated as the intended target. To 

avoid always returning a target even when user 

intentionally clicks on a blank space, clicks falling 

outside of 3Σ contour line of the corresponding 

distribution will be ignored. Figure 3 shows an example 

illustrating how 2D-BayesPointer works in practice. 

Experiment 

We conducted a study to answer the following three 

questions: 1) whether the performance of 2D-

BayesPointer is better than Windows basic selection 

technique (i.e. Basic) and other existing selection 

techniques (i.e. Bubble Cursor and Comet); 2) how 

these techniques perform with varied target sizes and 

speed levels; and 3) do users prefer the implicit 

manner enabled by our technique? 

We recruited 16 subjects (average age = 26, 6 

females) in this study. All of them were right-handed. 

We ran the experiment on a Lenovo P318 computer, 

with an Intel Core i7 4 Quad core CPU at 2.6GHz and a 

23-inch (533.2×312mm) LED display at 1,920×1,080 

resolution. The pointing device was a Dell MS111 

mouse (1000 dpi). The experimental environment was 

developed with Unity3D. Figure 4 shows the four 

techniques in this comparative study. 

Independent variables  

We used a within-subjects design to compare between 

4 techniques, 4 target widths, and 4 speed levels:  

 Technique (Tech): Basic, Bubble Cursor [2], Comet 

[3] and 2D-BayesPointer 

 Target Width (W): 24 pixels, 48 pixels, 96 pixels, 

144 pixels 

 Target Velocity (V): 96 pixels/sec, 192 pixels/sec, 

288 pixels/sec, 384 pixels/sec 

Each subject performed 10 trials in each condition. In 

total, we had 4×4×4×10×16= 10240 trials. 

Participates could practice before starting and could 

rest anytime they wanted in between. The order of 

techniques was counterbalanced across participants. 

Figure 4. Four techniques 

explored in the study (from top to 

bottom: Basic, Bubble, Comet 

and 2D-BayesPointer). 

 



 

Tasks 

After a user started a certain technique, 15 balls 

appeared at random positions within the window 

(1,024×768 resolution) and moved toward random 

directions with the same pre-determined target size 

and speed. The red ball was the target and participants 

were asked to select it as accurately as possible and as 

fast as possible. The other white balls were interfering 

objects (Figure 2). Balls bounced off when they hit the 

edge of the interface. Participants completed a trial 

when they successfully selected the red target.  

Measures 

We collected the completion time and error rates for all 

W×V conditions. Completion time was the time duration 

from trial start to a successful selection. Error rate was 

recorded if users clicked the mouse button but failed to 

select the target. We also collected post-surveys to 

gather subjective feedback. 

Results 

We used the repeated-measures ANOVA test for the 

following analyses. 

Completion Time 

All three variables Tech (F3,45=30.688, p<.001), W 

(F3,45=6.545, p=.001) and V (F3,45=8.436, p<.001) 

exhibited significant effects on completion time. 

Pairwise comparisons using the Bonferroni adjustment 

yielded significant differences across all pairs of 

techniques (p<.05) except 2D-BayesPointer vs. Comet 

(p=1.0). 2D-BayesPointer had the lowest average 

completion time (1099ms), followed by Comet 

(1138ms), Bubble Cursor (1324ms) and Basic 

(2657ms). Figure 5 shows the average completion time 

across Tech with varied W and V.  

Error Rates 

All three variables Tech (F3,45=75.306, p<.001), W 

(F3,45=3.537, p=.022) and V (F3,45=12.462, p<.001) 

exhibited significant effects on error rate. Pairwise 

comparisons showed significant differences across all 

pairs of techniques (p<.05). The lowest error rate was 

achieved by 2D-BayesPointer (14.0%), followed by 

Comet (20.9%), Bubble Cursor (32.7%) and Basic 

(54.7%). Figure 6 shows error rates across Tech with 

varied W and V.  

Performance of Varying Sizes and Speed Levels 

We tested the effects of W and V on speed and 

accuracy of each technique separately. Results showed 

that W or V could make significant or marginal 

significant effect on the performance of Basic, Bubble 

Cursor and Comet. On the contrary, neither W nor V 

exhibited significant effect on performance of 2D-

BayesPointer (Table 1). Therefore, the speed and 

accuracy performances of our technique is robust 

across varied target sizes and speed levels.  

Technique 
Completion Time Error Rates 

Width Velocity Width Velocity 

Basic 0.004* 0.001* 0.028* 0.002* 

Bubble 0.141 0.023* 0.048* 0.057 

Comet 0.004* 0.127 0.037* 0.089 

2D-BP 0.065 0.809 0.613 0.427 

Table 1: p-values of W and V effects on performance of the 

four techniques, * marked a significant level of p<.05. 

In addition, we found Bubble Cursor suffers a decline 

on speed and accuracy when target size increases. We 

attribute this to the fact that bigger target size 

 

Figure 5. Completion time across 

techniques by (a) different widths 

and (b) different speed levels. 
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increases the chance of multi targets overlap on each 

other, thus it is difficult for Bubble Cursor to pick out 

the intended one in such situation. 

Subject Feedback 

A 7-points Likert scale for soliciting users’ preference 

showed that they preferred 2D-BayesPointer (M=5.82, 

SD=0.98) more than Comet (M=5.72, SD=1.34), 

Bubble Cursor (M=5.36, SD=1.43) and Basic (M=2.73, 

SD=1.55). Sample responses include: 

 “The 2D-BayesPointer technique looks the same with 

Basic, but it is much quicker.” [S12] 

 “The Bubble Cursor is fast, but it hard to use in big 

and dense targets.” [S1] 

Conclusion and Future Work 

In this paper, we presented 2D-BayesPointer, an 

implicit moving target selection technique using 

statistical criterion derived from human performance 

modeling. We conducted a controlled experiment to 

evaluate our technique. Results showed that 2D-

BayesPointer outperformed Comet in selection 

accuracy, and it outperformed Bubble Cursor in both 

speed and accuracy. Our technique works in an implicit 

manner and it is robust across varied target sizes and 

speed levels. We believe that this technique can be 

useful to improve interaction efficiency in interactive 

systems with dynamic content. 

In the future, we will validate our technique in real 

world scenarios and explore applying 2D-BayesPointer 

on different input devices. We are also interested in 

extending this technique for moving target selection in 

3D environment, which might be more inspirational for 

VR and AR developers and practitioners.  
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Figure 6. Error rates across 

techniques by (a) different widths 

and (b) different speed levels. 
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